Polymeric nanocarriers for siRNA delivery to murine macrophages.
نویسندگان
چکیده
This work investigates the interactions of a polycationic nanocarrier with siRNA and with cells in order to better understand the capabilities and limitations of the carrier. The polycationic nanocarriers are cross-linked copolymer nanoparticles synthesized in a single-step reaction using ARGET ATRP (activators regenerated by electron transfer atom transfer radical polymerization). The polycationic nanocarriers efficiently bind siRNA for polymer/siRNA mass ratios less than 1. A method to prepare fluorescently labeled polycationic nanocarriers is presented. The fluorescently labeled polycationic nanocarriers are used to investigate cellular internalization with RAW264.7 murine macrophage cells. Flow cytometry demonstrates that the uptake increased with nanoparticle concentration and incubation time. Confocal microscopy confirmed internalization of fluorescently labeled nanoparticles. The investigation of siRNA-induced knockdown demonstrates that higher concentrations of nanoparticles and siRNA are associated with increased knockdown. For the conditions tested in the knockdown experiments, the ARGET ATRP polycationic nanocarriers outperformed a commercially available Lipofectamine control.
منابع مشابه
KONA Powder and Particle Journal No. 33 (2016) 63–85/Doi:10.14356/kona.2016014
This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment...
متن کاملInhibition of ABCB1 (MDR1) Expression by an siRNA Nanoparticulate Delivery System to Overcome Drug Resistance in Osteosarcoma
BACKGROUND The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR) after prolonged therapy. METHODOLOGY/PRINCIPAL FINDINGS In order to overcome both the dose-limit...
متن کاملUltrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas.
Ultrasound (US)-sensitive nanobubble (NB) which may utilize the physical power of US exposure to improve delivery efficiency to target cells is emerging as one of the most promising nanocarriers for drug delivery. On the basis of successfully fabricating NBs with the ability of passively accumulating in tumor tissue, in this study we synthesized a US-sensitive NB bearing siRNA (siRNA-NB) for tu...
متن کاملStrategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers
Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery stro...
متن کاملStealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers
Over the last few decades, nanocarriers for drug delivery have emerged as powerful tools with unquestionable potential to improve the therapeutic efficacy of anticancer drugs. Many colloidal drug delivery systems are underdevelopment to ameliorate the site specificity of drug action and reduce the systemic side effects. By virtue of their small size they can be injected intravenously and dispos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Macromolecular bioscience
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2014